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1 Introduction

Early wave prediction methods were based on nondimensional relationships
among various wave generation parameters (Sverdrup and Munk 1947;
Pierson, Neumann, and James 1955; Bretschneider 1952). These methods
treated the entire wave spectrum as though it was equivalent to a single wave
train, and the resulting models have been subsequently termed parametric wave
models. By the early 1960's, a large body of evidence had accumulated which
clearly demonstrated that waves in nature are better represented by a linearly
superposed directional spectrum than by parametric wave trains. This moti-
vated initial development of discrete spectral wave prediction models (Gelci,
Cazale, and Vassal 1957). In this type of model, individual discretized compo-
nents of a directional wave spectrum are modeled independently, except for
parametric constraints on the local wave steepness as postulated by Phillips
(1958).

Since the work of Hasselmann in the early 1960's (Hasselmann 1962,
1963a,b), a strong theoretical foundation for the estimation of nonlinear energy
transfers in a gravity wave spectrum has existed. However, most researchers
in the 1960's believed nonlinear interactions to be so weak that they were not
significant to the overall wave generation process. Since no field evidence
existed to contradict this belief and since numerical methods and computers
were not available to evaluate the complete integral for nonlinear wave-wave
interactions, the evolution of a wave spectrum was believed to be controlled
only by direct wind input and wave breaking (Phillips 1957, Miles 1957,
Bunting 1970). Under this assumption, the concept of an equilibrium range in
a spectrum was formulated as an absolute limit to wave steepness, controlled
only by wave breaking (Phillips 1958).

Following the theoretical concepts of Phillips (1957, 1958) and Miles
(1957), early discrete-spectral wave prediction models were based on the con-
cept that direct wind input was the primary mechanism in wave generation. In
these models the equilibrium range related only to an absolute steepness (Inoue
1967, Bunting 1970, Cardone, Pierson, and Ward 1976). Models of this type
have been termed first-generation wave models.

Evidence contradicting this direct-wind-input concept of wave generation
began to appear in studies in the late 1960's (Mitsuyasu 1968ab): and in 1973
data from the Joint North Sea Wave Project (JONSWAP) experiment, along
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with a synthesis of several other d_.. sets (Hasselmann et al. 1973), demon-
strated that energy levels in the equilibrium range varied systematically as a
function of wind speed and fetch. This evidence, along with observations of
"overshoot/undershoot" in energy levels near the spectral peak (Barnett and
Wilkinson 1967, Barnett and Sutherland 1968) indicated that nonlinear inter-
actions among wave components played an important role in wave generation.
Calculations of the form of net source terms for wave spectra propagating
along a fetch (Mitsuyasu 1968a, Hasselmann et al. 1973) were also consistent
with the idea that nonlinear effects (wave-wave interactions) were a dominant
source term in the wave generation process.

Revised concepts of the physics governing wave generation (Barneti 1968,
Mitsuyasu 1968b, Hasselmann et al. 1973) and the recognition of potential
prediction problems inherent in first-generation models (Resio 1981, Resio and
Vincent 1982) motivated the development of discrete-spectral models incorpo-
rating nonlinear wave-wave interactions as an active source term. Such models
have been termed second-generation models. Early models of this type
(Barnett 1968, Ewing 1971) still assumed that energy levels in the equilibrium
range were controlled only by wave breaking, and that hence, an absolute limit
to wave steepness existed in the equilibrium range. Models such as this were
still characterized by spectral evolution through time and space similar to that
of first-generation models. Later models, such as that of Resio (1981), recog-
nized the importance of allowing energy levels in the equilibrium raige to vary
systematically as a function of certain wave generation parameters. Models of
this class have been found to produce results that are consistent with observed
patterns of temporal and spatial wave growth.

In second-generation models, the form of the wave spectrum is assumed to
be governed by a dynamic balance between wind input into the equilibrium
range and the nonlinear flux of energy out of this region of the spectrum via
nonlinear wave-wave interactions. Hasselmann et al. (1976) argued that the
strength of the shape-stabilizing effects inherent in this dynamic balance was
so dominant in the spectral evolution equation that wave spectra in nature
always stayed fairly close to a prescribed equilibriumn form. In fact,
Hasselmann et al. argued that the dominance of this dynamic balance was
sufficient to allow the spectrum to be modeled by simple parametric methods
comparable to those of Bretschneider (1952). Recently, however, Hasselmann
and Hasselmann (1985), and Hasselman et al. (I -)85ab) have introduced a
class of wave models in which it is assumed that the shape-stabilizing effects
of wave-wave interactions are not stwificiently dominant to control spectral
shape. Such wave models are termed third-generationT models. In these
models constraints on energy levels in the spectrum (up to frequencies about
twice that of the spectral peak) are removed and the spectnun is allowell to
vary as a function of the ac-,ý;al estimated source terms. At frequencies above
about twice the spectral peak frequency. a prescribed paramn -nc tail is
employed to maintain stability and computational efficiency.

Due to its significance in controlling both spectral shape and wave growth.

the proper evaluation of the nonlinear source function is of central importance
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to the implementation of a valid third-generation wave model and. conse-
quently, is critical to understanding the physics of wave generation. For such
reasons, Hasselmann et al. (1985a) investigated four different means of obtain-
ing estimates of the nonlinear source term. As will be shown subsequently in
this report, none of the four methods investigated in that earlier study has been
shown to produce reliable (within a factor of 2 accuracy) estimates of the
nonlinear source term over the entire spectrum for a wide range of spectral
shapes.

Recent work by Petrie and Resio (1993) has shown that proper specifica-
tion of all source terms is critical to the accurate simulation of wave growth in
wave models that attempt to use the principle of detailed balance in their pre-
dictive equations (i.e., all third-generation wave models). Of particular signifi-
cance in the Pemrie and Resio results is the determination of a critical fre-
quency f, which represents a point of zero net flux in the nonlinear energy
fluxes. For a JONSWAP spectrum with a peakedness parameter equal to 3.3.
this frequency is equal to 1.50 times the frequency of the spectral peak. Since
there are no net nonlinear energy transfers across this frequency, all energy
entering the spectrum at lower frequencies is retained as net wave growth.
Consequently, it is clear that the accurate specification off is absolutely criti-
cal to predictions of total wave growth. If a nonlinear source term is poorly
specified, it cannot be expected to accurately determine the location of f, in
arbitrary spectra.

The purpose of the effort described in this report is to revisit the problem
of specifying the nonlinear source term and to incorporate a more accurate
form for representing these interactions into a functioning wave model. For
this purpose, rather than to attempt additional parameterizations, we use a full
Boltzmann integral of the Resio-Perrie (1991) type. For the first time ever,
this will enable us to obtain very accurate estimates of the nonlinear source
term. This, in turn, should allow us to address some important questions relat-
ing to spectral evolution under turning winds, swell decay, and the approach to
fully developed form. In a sense, the full Boltzmann model (FBM) represents
the first third-generation model with a truly accurate representation of the
nonlinear source term. However, it should be recogniLed that this model is
very "young." In its present state of development, it is a functioning research-
mode model; but it should in no way be regarded as an operational wave
model. The only other existing third-generation wave model, the WAM model
(from the acronym WAve Model), was under development by a staff of several
scientists and engineers for over five years before it was made into an opera-
tional model: and, six years later, it still is being modified in its operational
mode.

As a second part of this study, the authors will apply the FBM to the Sur-
face Wave Dynamics Experiment (SWADE) results. This will provide insight
into the detailed balance of mechanisms responsible for the observed wave
growth and decay in some relatively complex situations. The SWADE wind
fields and measured data have not yet been released for the second part of this
study, so those comparisons will be reported in a separate report.

3
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2 Previous Representations
of Nonlinear Energy
Transfers in a Wave
Spectrum

Representations of the Complete Interaction
Integral

Hasselmann's (1962) representation of the rate of change of energy density
at a given location within a wave spectrum involves four interacting waves and
is of the form (Hasselmann and Hasselmann 1981)

n =k ffjf k1 ,k2 k3 ,k4) 8 (k, 42 -k3 -k4)8 (O~+ 1 )2 -Wo3 --04)
000000

n(kj)n(k3)[n(k4)-n(k2)J +n(k2)n(k4)[n(k3)-n(kl)]dk2dk3dk4

where

,k = wave number vector specifying the location of the ith interacting
wave within the spectrum

oi = radial frequency of the ith interacting wave

n(ki) = action density of the ith intetActing wave, C(.) is the coupling
coefficient which describes the strength of the interactions

8(.) = Dirac delta function "

It should be noted that the form of Equation I ensures conservation of action,
energy, and momentum. Webb (1978) provided a transformed version of
Equation I as
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o 2ff T(kL3)dk3 (2)

00

where

(kl,k3) -= transfer of action from k3 to k1, given by

T(k1_,k3) = fC(klk2,k3,k4)D(klk 2,k3,k4)1 nW H(klk 3.k4) dS

where 
(3)

D(kl,k-,,k3,k4) = n(kl)n(k3)[n(k4 )-n(k2 )] ÷ n(k2 )n(k4)[n(k 3)-n(kl)]

In Equations 2 and 3 the interactions are now prescribed along an interaction
locus, with s and n representing unit vectors along and across the locus,
respectively, and W=(o*+o32-cw3-o 4. The function H(,.kl,_, is defined as

H(klk 3,k4) = 1 when 1k,--k31 _< 1k4-k4 1

= 0 when 1k1-k31 > 1kl-k 4 1

Webb, Tracy, and Resio (1982), and Resio and Perrie (1991) have all shown
that Equations 2 and 3 provide a stable form for evaluating nonlinear energy
transfers within a spectrum. Hence, the numerical method described in Resio
and Perrie (1991), based on this equation, will be used here in comparisons of
given approximations to the full Boltzmann integral

An advantage to the form of Equations 2 and 3 over Equation 1 is inherent
in the reduction of the integration over k2 and k to contributions along a
specific interaction locus for each given combination of k1 and k. In a
numerical approximation of Equation 3, k1 and k3 can be specified precisely as
the centers of integration grid cells (Figure 1). The values of 42 and k are
then fixed to fall along appropriate interaction loci. The error in the evaluation
of the location of k2 and k4 (and the action densities at these locations) is
limited only by the accuracy of the numerical solution of the locus equation.
This can be specified independent of the size of the integration grid cells.

In integration methods based on Equation 1, interacting sets of wave
numbers are specified to an accuracy limited by the discretized accuracy of the
integration grid. As pointed out previously, any two of the wave numbers can
be arbitrarily specified to coincide with points in the discretized integration
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grid, with no loss of generality. The other two wave numbers are also
approximated by values at the center of their grid cells. Although the delta
functions are formally removed from the integral, the value for the energy
density is taken from the discretized location of the center of the integration
grid cell. This allows an exploitation of certain symmetries in the interaction
integral (Hasselmann and Hasselmann 1981). However, as shown in Figure 2,
if k- and k3 are chosen to be coincident with fixed grid points, then the loci of
points satisfying the wave number delta-function constraint will in general not
be coincident with grid points. Thus, the assumptions wat the six-fold
collision integral can be written as a symmetric eight-fold integral will lead to
inaccuracies in locations of the wave number positions used in the calculations.
In turn, this produces quasi-random deviations around the correct integral
solution for the nonlinear transfer source function S, 1 as was shown by Resio
and Perrie (1991) in a comparison of calculation of the Hasselmann and
Hasselmann (1981) results to those based on an integral directly along the
locus.

Representations of Parameterizations of the
Interaction Integral

To date, methods for estimating the nonlinear source term due to wave-

wave interactions in wave spectra can be divided into four main categories:

a. Direct parameterizations based on spectral energy content and shape.

b. Parameterizations based on empirical orthogonal functions.

c. Parameterizations based on local interaction approximations.

d. Parameterizations based on selected integration domains of the total
integral.

Each of these methods will be discussed in turn here. Also, the basic form of
each will be presented, along with limitations in their accuracies and
efficiencies.

Direct parameterizations

Barnett (1968) and Ewing (1971) both developed parameterizations of the
nonlinear source term which depend explicitly on (a) total wave energy,
(b) prescribed shape functions, and (c) scaling frequencies related to the loca-
tion of the mean frequency. In this form the representation for the nonlinear
source term S,,, is given by

Chapter 2 Previous Representations of Nonlinear Energy Transfers 7
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SR E(f ,0 ) 1 ( 4, 0 )00 2(Ifp)O 3 (0- 0 ) (4)

where

00 = mean wave propagation angle

E0 = total energy in the wave spectrum, given by

EO= f fE~O)dfdO (5)
00

where

EO) = spectral energy density at frequencyf and propagation direction 0

fo = a frequency scaling function of the form

a 1
f= fE(f md ; (6)

E00

where

E(J) = nondirectional spectral density, given by

2n

E(t) = fE(fO)dO (7)

0

and m = a positive integer (usually taken to be equal to 1 or 2).

Resio (1981) recognized certain exact similarity characteristics of
Equations 2 and 3 and chose to base his parameterization of Snt by the form

SRO(f,) = 3f " 4 (flfp) 5 (O_0) (8)
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where

a = equilibrium range coefficient for an f 5 equilibrium range

fp = frequency of the spectral peak

04, 05 = prescribed shape functions for frequency and angular
characteristics, respectively

Since, at that time, it was widely believed that the spectral equilibrium range
did follow an f 5 law (Phillips 1958, Kitaigorodskii 1961) and that spectral
evolution along a fetch and through time followed a self-similar form
(Mitsuyasu 1968b, Hasselmann et al. 1973, Toba 1978), this parameterization
appeared to provide z reasonable approximation to the wave-wave interaction
source term for spectra undergoing active wave generation (Figure 3).

Unfortunately, all of the parameterizations of this class are appropriate only
for a narrow class of spectral shapes (albeit spectral shapes prevalent during
most active wave generation scenarios). All of these parameterizations were
formulated with the understanding that side conditions (such as the allowable
energy levels in the equilibrium range) must be invoked whenever these
parameterizations are used in predictive schemes. Hence, none of these param-
eterizations can be considered either sufficiently general or sufficiently
unencumbered with constraints to be incorporated into a third-generation wave
model.

Empirical orthogonal function (EOF) representations

The theoretical basis for EOF analyses shows that, for a given set of corre-
lated variables (such as energy densities or Sd at adjacent frequencies), an
EOF analysis provides an optimal basis for representing a data set. Optimality
in this context is taken as having the maximum variance explained in the
smallest number of dimensions. Vincent and Resio (1977) showed that such
an analysis for measured spectra at a site was capable of giving a good and
efficient representation of nondirectional wave spectra in the absence of swell.
However, in order to derive these functions one would have to have an
a priori set of all possible spectra or S,,1's (or at least a very large set) in order
to form the covariance matrix for the EOF (eigenfunction) analysis. Such an
analysis would be extremely difficult if, in fact, at all possible.

Hasselmann et al. (1985a) formulated a set of EOF's for a synthetic set of
simulated spectra based on combinations of different nondirectional spectral
shape parameters and angular spreading characteristics. Since an empirical
parameterization can be no better than the data set on which it is based, it does
not seem that much is gained by using the EOF's. A direct parameterization
based on the spectral shape and angular spreading parameters themselves

10 Chapter 2 Previous Reprsentationh of Nonlinear Energy Transfers
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appears to be more feasible. This approach offers interesting possibilities; but
until the problem of a limited data set for analysis is overcome, it does not
seem to be very practical.

Local Interaction approximation

If one takes the full interaction integral and assumes that contributions to
this integral are dominated by interactions that are close to k (using the nota-
tion consistent with Equations 2 and 3), then a local expansion can be used to
develop a diffusion operator for representing S., (Hasselmann and Hasselmann
1981. Hasselmann et al. 1985a). This parameterization provides a better repre-
sentation of S,, as the spectral peakedness increases, since contributions to the
total collision integral will be more restricted as this happens. Webb (1978)
showed that significant contributions to S,, at a given wave number can come
from wave numbers quite removed from that wave number. Although this
approximation does conserve action, energy, and momentum and does seem to
follow the general shape of the actual form for S.,, it cannot be considered as
a general solution to the parameterization problem.

Discrete Interaction approximation (DIA)

A final parameterization effort from Hasselmann et al. (1985a) is based on
the representation of the total integral by an integral over a smaller subsection
of the interaction space. This approximation assumes that the dominant inter-
actions come from a small pre-defined region in wave number space. Details
can be found in Hasselmann et al. (1985a) and will not be repeated here.

Figure 4 shows a comparison of the DIA parameterization of S,, to the
complete interaction integral for a JONSWAP spectrum from Hasselmann et al.
(1985a). Agreement is quite poor in the equilibrium range of the spectrum.
Since a third-generation wave model's purpose is to use the principle of
detailed balance throughout the spectrum (up to at least 2.5 f, or so), misrepre-
sentations of Sa in the equilibrium range can pose a serious problem. Due to
the fact that the DIA is used in a third-generation wave model (WAMDIG
1988) that is widely distributed, it seems that additional comparisons are
merited. Figure 5 shows a series of independent comparisons between the DIA
and the total integral (Resio and Petrie 1993). The top two cases are spectra
with directional shear in them. The bottom case is a typical swell spectrum
with no shear. As can be seen there, the results suggest that the DIA provides
only a rough approximation to the total integral for some spectra, and does not
seem to provide an accurate, generalized representation for Sn.

It would appear that at least a brief investigation into the reasons for DIA's
failure in some of the cases shown in Figures 4 and 5 is in order. Perhaps the
best way to view this is by examining what controls the strength of interacting
waves (i.e., the rate of energy transfer from one part of the spectrum to
another). Results of Webb (1978) demonstrate that energy transfers in and out

12 Chapter 2 Previous Representations of Nonlinear Energy Transfers
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of a particular wave number location come from a rather broad region of wave
number space and are not localized along preferre interaction locations. The
reason for this broadness is straightforward. Contributions to the full integral
can be separated into two different effects. The first effect depends on all of
the "phase-space" effects, such as the coupling coefficient, the phase volume
involved in the interaction, and the magnitude of the Jacobian term (•W/ln) in
Equation 3. The second effect comes from the relative magnitudes of the
action density triplets for each interaction volume. The first effect can be
roughly parameterized in an a priori sense (which is the basis for the DIA).
This assumes all. interactions outside of the relatively small DIA region are
negligible. The latter effect depends on details of the specific wave spectrumn
and cannot be parameterized via an a priori limitation to the integration
region. Hence, the DIA cannot be accepted as a generalized representation for
Snl-

Chapter 2 Previous Representations of Nonlinear Energy Transfers 13
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3 Implementation of a Full
Boltzmann Representation
for Sn, in a Discrete
Spectral Wave Model

Although work on simplified representations for S, continues in various
research groups around the world, no simplified method presently exists with
an ability to accurately approximate the full Boltzmann solution. Due to the
central importance of this source term in the wave generation process, develop-
ment of third-generation wave models has been seriously hampered. In this
class of wave models, parametric constraints placed on spectral shape in
seccnd-generatvon models are removed, and the spectrum is allowed to attain
local equilibrium levels as dictated by the detailed balance of various source
terms. Accurate source term representations are critical to the proper perfor-
mance of such models.

The objective of this investigation has been to develop a discrete-spectral
wave model that incorporates a complete representation of the Boltzmann
integral for its wave-wave interaction source term. Even given today's power-
ful supercomputers, it is likely that this code will be useful only for research
applications, rather than for climatological or forecast applications. However,
this may change as faster computers and more efficient codes are developed in
the future and as more experimentation is conducted with this type of model.
In this section, the general structure of the prototype for this new model class,
the FBM, will be discussed.

As shown in Figure 6, the overall structure of FBM follows along the same
lines as the U.S. Army Engineer Coastal Engineering Research Center
WISWAVE model (Hubertz 1992), with some simplifications where deemed
appropriate. In particular, FBM is strictly a deep-water model, since no effi-
cient numerical scheme presently exists for solving the full shallow-water
Boltzmann integral.

Chapter 3 Implementation of a Full Boltzmann Repmsentation 15



Main Program

alls - Rdopt (sets run options)

calls - Initsnl (initialized SNL matrices)

TIME-STEP LOOP

calls - Rdwnd (reads input wind fields)

calls - Source (performs source integration)

calls - Bset (sets parametric densities)

calls - SnI (calculates Sa.)

calls - Sin (calculates Sj.)

calls - Sdiss (calculates Sa,)

calls - Outp (writes selected output fies)

END OF T7ME-STEP LOOP

Figure 6. Outline of the structure of FBM

A discrete spectral wave model attempts to solve the general radiative trans-
fer equation for each frequency-direction component of a spectrum. This
equation has the general form

3

aE(f,) = -VE(f + (9)

k-1

The first term of the right-hand side of Equation 9 represents the effects of
wave propagation. The second termn represents the effects of source and sink
terms affecting spectral energy levels. This equation is an inhomogeneous
partial differential equation. The solution technique solves the homogeneous
part (propagation) first and the inhomogeneous part (source integration)
second.

16 Chapte 3 Implemenation of a Full Boltzmann Reprsentabon



Under the present understanding of the physics of wave generation, it is
believed that three source terms (wind input, nonlinear wave-wave interactions,
and wave breaking (including high-frequency dissipation)) constitute the pri-
mary processes affecting deep-water wave growth and decay. The FBM is
written in a modular fashion so investigators can modify and/or replace source
functions as desired.

The most difficult aspects of implementing a full Boltzmann solution for S,,
into a wave model center around two problems. First, the full-integral solution
is extremely nonlinear and formally extends over a range of frequencies from 0
to o-; consequently, it can be extremely unstable. Second, actual knowledge of
the detailed balance of the wind input and wave breaking source functions is
quite limited. Attempts to argue definitively for a particular theoretical form
of these source functions should be regarded with skepticism. Although FBM
has a potential to answer important questions relevant to rates of nonlinear
energy fluxes through a spectrum, it cannot be expected to provide definitive
estimates of Si,, the wind input, or S.,, wave breaking.

For the sake of efficiency, the domain for the Boltzmann integral will be
limited to a reasonable size in wave number space. A problem with limiting
the integration domain to less than some "cutoff' wave number, kc, is that the
collision integral at k, will include all interactions from frequencies less than or
equal to k, but none from higher frequencies. This totally distorts the energy
fluxes through k. and misrepresents estimates of S,, at k,. To overcome this
difficulty, FBM separates the infinite domain into four parts, as shown in Fig-
ure 7. In region I, it is assumed that wave-wave interactions are negligible and
can be ignored; thus. the boundary condition between regions I and II is a
zero-flux constraint. Region II is intended to cover the wave number range of
a typical discrete spectral wave model. In this region, FBM allows the user to
select the number of frequencies (wave numbers) and directions in a manner
consistent with WISWAVE. Region III includes the range of frequencies that
are. "significantly" involved in interactions with wave components in region II.
Since the boundary condition between regions III and IV cannot be specified
(without extending the integral to oc), energy levels within region III must be
set parametrically. Once this is done, the boundary condition on fluxes
between regions II and II is automatically specified by the interaction integral,
given that the integration limit on k3 in Equation 2 is allowed to extend to the
boundary of region IV. The logical limit on the k, domain in Equation 2 is up
to the lower boundary of region III. It is assumed that contributions to S,
from region IV are negligible.

Some wave models contain linear atmospheric input terms of the form
originally proposed by Phillips (1957). These models can start from an initial
condition of zero energy. However, wave models with significant linear wind
input terms have been shown to produce spectral shapes which deviate dramat-
ically from observed spectra in nature (Resio and Vincent 1982). Therefore,
FBM does not incorporate such a source term and instead relies on a paramet-
ric model for wave growth in regions III and IV. The equations for wave
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SEPARATION OF FBM DOMAINS

Figure 7. Separation of FBM domains

growth in these frequencies assume negligible propagation effects and follow
the duration growth equations and spectral shape formulation given in Resio
and Peme (1989). These equations are used to calculate the frequency of the
spectral peak fp and associated spectral energy densities until f moves into
region 11 of the simulation.
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4 Source Term Development
and Nondimensional
Testing

In FBM, it is possible to vary (via simple internal switches in comments
and executable statements) source functions in order to calibrate growth rates.
The modular structure of FBM is such that all constants and functions inherent
in S. are set inside of subroutine SIN. Similarly, all constants and functions
inherent in S,, are set inside subroutine Sd,.

From considerations of spectral equilibrium range characteristics, approach
to a fully developed spectrum, and net growth rates, the following source term
balances are anticipated:

a. In the equilibrium range, divergence in the fluxes due to nonlinear
interactions should be approximately balanced by the wind source term
and wave breaking should be of secondary importance.

b. As a fully developed spectral form is approached, the wave breaking
source term should approximately balance the positive source due to
nonlinear fluxes of energy onto the forward face of a spectrum (at least
in an integrated sense).

c. The rate of gain of total energy should be approximately self-similar;
thus, due to the extreme shape-dependent behavior of the S,., the
detailed balance of all source terms is expected to create evolving spec-
tral shapes that maintain a reasonably consistent shape.

With the above guidance, literally hundreds of source-term combinations
have been investigated inside FBM. In this section, we shall first examine the
performance of FBM with wind input and wave breaking source terms from
WAMDIG (1988). As will be seen here, these source terms do not produce
wave growth rates or spectral shape characteristics that compare very well with
observations. Because of the failure of the WAM source terms, FBM will also
be tested with some new source terms.
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The wind input source term referenced by WAMDIG (1988) follows the
form of Snyder et al. (1981). Snyder et al.'s form is approximately given by

Sa. = 0.25 pa. [u, cos(0-O0) - 1.1 o)E.O) (10)
P. C

where

0,, = direction of the wind

p. = density of air

p, = density of water

0 = wave propagation direction

0o = radial frequency

u5 = wind speed at a level of 5 m

c = wave phase velocity

WAMDIG uses the following modified form of this equation, which is based
on friction velocity u. rather than wind speed.

Six = 0.25S.I28ucosO - 1] coE(fO) (11)
P. C

The similarity to the previous equation is very evident. An unfortunate aspect
of WAMDIG's form for S,4 is that the limiting frequency for a fully developed
sea has a dependence on friction velocity rather than wind speed. Previous
studies (Pierson and Moskowitz 1964) have suggested that this limiting fre-
quency be based on wind speed. No theoretical or empirical evidence has
been presented which supports the use of u. for scaling the limiting frequency
in a fully developed sea.

The WAMDIG form for dissipation due to wave breaking has its theoretical
basis in the work of Hasselmann (1974). Subsequently. Komen et al. (1984)
"tuned" this term to provide a zero net source-term balance for a fully devel-
oped spectrum. The WAMDIG representation for Sd. is given by

Sa, = b;@(.!)2( IZ )2E(f,O)) (12)

where
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b = empirical coefficient

a = equilibrium range coefficient

apm = Pierson-Moskowitz equilibrium range constant (0.0081), and
-2xt

- I-0 =1 'ffoE~cO)df~d0

E0 0

where
-2s

Eo- ffEfO')dfdo
00

Nondimensional Parameters for Testing

A substantial historical perspective exists (Bretschneider 1952, Mitsuyasu
1968, Hasselmann et al. 1973) for making wave comparisons in a nondimen-
sional context. Hasselmann et al. (1973) added the extensive data set collected
during JONSWAP to data from several previous studies and developed empiri-
cal laws governing relationships between pairs of nondimensional parameters,
sometimes referred to as the JONSWAP relationships. These relationships will
be used in this section to provide an observational context for all model pre-
dictions. The four relationships examined here will be nondimensional energy
versus nondimensional fetch, nondimensional peak frequency versus nondimen-
sional fetch, nondimensional energy versus nondimensional time, and non-
dimensional peak frequency versus nondimensional time. The definitions of
these nondimensional parameters are as follows:

Nondimensional energy

El = g2Eo/u 4

Nondimensional fetch

x= gx/u.,

where x is the fetch over which the wind blows.

Nondimensional peak frequency

fhpe = uSfa,/
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where f is the spectral peak frequency, and

Nondirnensional time

t= gt/u.

where t is the duration of the wind.

Testing with Existing Source Terms

Using the WAMDIG source terms with FBM produced the results for E'
versus x', fp versus x', E' versus e, and fj versus t' shown in Figures 8-11.
These results were obtained by running FBM with constant 10-m/sec and
20-m/sec wind speeds with the high-frequency tail constrained to anf"5 form.
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Figure 8. Comparison of FBM nondimensional energy grn.wth rate with fetch
(using WAMDIG (1988) source terms) to JONSWAP results
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Figure 9. Comparison of FBM nondimensional peak frequency growth rate
with fetch (using WAMDIG (1988) source terms) to JONSWAP
results

Attempts to run using the WAM source terms with an unconstrained tail pro-
duced erratic results, so only results with the constrained tail are shown here.
It should also be noted that portions of the WAMDIG results shown in these
figures are produced by the parametric solution in region III of FBM. In the
region governed by the detailed balance solution (region H1), the WAMDIG
results deviate dramatically from the JONSWAP relationships.

Fetch tests were conducted on an idealized basin with side boundary condi-
tions equivalent to an infinitely wide fetch area. The length of the basin was
310 km with a grid size of 10 km. The time-step used in these simulations
was 300 sec. The relatively short time-step was required to maintain stability
in the evaluation of S,,. Duration tests were conducted by setting the grid size
very large (100,000 kin) and using only a single grid point in the water portion
of the grid. These tests were also run with a 300-sec time-step. The results of
these tests are shown in Figures 10-11, along with the corresponding
JONSWAP relationships. These results show that the source terms in
WAMDIG (1988) do not reproduce the JONSWAP relationships. These tests
also demonstrate that the treatment of the high-frequency tail significantly
affects total wave growth. This latter finding is a direct contradiction of the
discussion in Komen et al. (1984), which states that their wave growth results
were not dependent on the characteristics of the high-frequency tail.
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Figure 10. Comparison of FBM nondimensional energy growth rate with time
(using WAMDIG (1988) source terms) to JONSWAP results

The above results were verified by running the WAMDIG source terms
inside the Boltzmann integral of Resio and Perrie (1991). Results from those
tests were virtually identical to the FB3M results and lend considerable confi-
dence to the above statements regarding the inability of the WAMDIG source
terms to reproduce the JONSWAP results. Many simple modifications to the
WAMDIG source terms were attempted in an effort to improve the agreement
with the JONSWAP relationships. However, these strictly empirical attempts
did not seem to work particularly well and required massive amounts of com-
puter time for each experimental run.

Alternative Source Term Formulation

From the above results and discussion, it is evident that some theoretical
guidance is necessary to obtain source functions that are capable of reproduc-
ing the JONSWAP relationships. Since wave-wave interactions are conserva-
tive, all energy entering a wave field must be derived directly or indirectly
from atmospheric input. From fundamental analyses of scaling functions of
fluxes from high to low frequency and from low to high frequency, it can be
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Figure 11. Comparison of FBM nondimensional peak frequency growth rate
with time (using WAMDIG (1988) source terms) to JONSWAP
results

shown that at least one "null-point frequency" fn mus': exist within a spectrum
such that fluxes from high to low frequencies exactly balance fluxes from low
to high frequencies (for all nonlinear source terms with at least three lobes).
An important consequence of the existence of this frequency is that there can
be no net transfer of energy between regions on either side of iL Recognizing
that the primary contribution to wave growth must come from inputs to fre-
quencies less thanf,,, the net gain of wave energy in a spectrum can be esti-
mated from the relationship

E0  f n2n
S(13)

77~.- ffsrn~~+S( )dd
00

The advantage of this form for net wave growth is that it removes the need for
computer-intensive calculations of SI. Given a parametric relationship
between fn and f, and an approximate spectral form for the spectral peak,
Equation 13 can be used to estimate wave growth with little loss of accuracy.
From numerical experiments with the full Boltzmann integral, it was deter-
mined that f. is approximately equal to 1.5 fp for spectra typical of the
JONSWAP experiment (peakedness values in the range of 2.5 to 3.5). This
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relationship provides closure for an accurate parametric approach to evaluating
various source terms without having to evaluate S,•.

It has been shown (Resio and Perrie 1989) tMr. :he JONSWAP relationship
for wave growth along a fetch is consistent with a constant rate of momentum
being transferred from the atmosphere. In order for a constant momentum flux
(Mo) to exist,

-1 " =constant (14)

where c, is the phase velocity of the spectral peak frequency. Combining
Equations 13 and 14, S., for a self-similar growth of the JONSWAP type
should have the form

S, -- bf.& [uJ 14 H(u/c)E(f,0) (15)

where H(ulc) is a Heaviside function. This form is similar to that suggested
by Resio and ?'errie (1989). It is also close to the Snyder et al. (1981) repre-
sentation of S,, so it is not contradictory to observational evidence. It should
be noted that this preserves a u.-scaling relationship for momentum input
during wave growth and a u-scaling for fully developed conditions.

Following arguments similar to those used for S,, Sd, must have constraints
on it that will allow Equation 14 to be met in order to achieve consistency
with the JONSWAP results. Uncomplicating the WAMDIG form and allowing
it to have a wind speed dependence as suggested by Banner and Phillips
(1974),

S, - E0 ,o) (16)
CP

This representation of S,, is consistent with observational evidence and allows
a self-similar form 1 - wave growth.

Equations 15 and 16 for S. and Se,, respectively, provide an alternate set of
source terms that can be used in conjunction with the full integral form for S,,
in FBM. Figures 12-15 show the computed nondimensional duration and fetch
relationships for tests with 10-, 15-, and 20-m/sec wind speeds. These results
are much closer to the JONSWAP relationships and are recommended for use
in any operational version of FBM. One point worth notih. n Figures 12-15
is that the asymptotes for the different wind speeds tested, not approach the
same values. The reason for this is that the fully developed sea is based on a
wind speed scaling, whereas friction velocity is used to scale E'. Thus, the
tendency toward different asymptotic values is as expected.
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Figure 12. Comparison of FBM nondimensional energy growth rate with fetch
(using new source terms) to JONSWAP results

Another small discrepency in the behavior of FBM is evident in a small
offset in both wave energy and peak frequency as they move from a spectral
peak in region III to a spectral peak in region 11. It is very difficult to merge
the two different solution methods (parametric versus detailed balance) into a
smooth transition through this interface. However, once the spectrum reaches
the discrete spectral range (presumably where one's primary interest lies),
solutions for all wind speeds become very self-similar.

As a final point in this chapter, it should be noted that the location offfn in
the numerical tests was found to be highly dependent on the densities in the
parametric spectral region (region Ili). This helps to explain the marked
dependence of wave growth on the treatment of the high-frequency tail of the
spectrum. Since there is no definitive concept of the characteristic behavior of
the spectrum in this region, the following assumptions have been made for the
equilibrium range densities in this region. Very importantly, for frequencies
from up to 2.5 times the spectral peak frequency, energies are allowed to equi-
librate to levels dictated by the "detailed balance" of all source terms. If this
region extends into region III, an f4 form as described in Resio and Perrie
(1989) was used to constrain the energies. For frequencies above 2.5 times the
spectral peak frequency (in both regions II and II), the equilibrium range is
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Figure 13. Comparison of FBM nondimensional peak frequency growth rate
with fetch (using new source terms) to JONSWAP results

allowed to go to an f- 5 form with eouilibrium densities consistent with the
JONSWAP relationship. This transition from an f4 to anf-5 characteristic
"form is consistent with the findings of Kitaigorodskii (1983) and Hansen et al.
(1990), except that the transition point in these other studies was somewhat
higher (approximately 3f,) than in FBM.
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5 Additional Testing

Introduction

In order to demonstrate the basic functionality of a wave modeY, it is desir-
able to subject that model to as wide a range of tests as possible. Possibly the
most important of these tests, model performance in reproducing the nondi-
mensional JONSWAP relationships, was covered in the last section. However,
certain other tests can provide important information regarding the behavior of
FBM in future applications and can help distinguish important differences in
the behavior of FBM relative to second-generation models and previous third-
generation models. Three sets of comparisons will be made here:

a. Model performance in turning-wind situations.

b. Spectral distributions of energy produced by FBM:

(1) With respect to frequency.

(2) With respect to angle.

c. Prediction of swell evolution.

Model Performance in Turning-Wind Situations

To test FBM under turning wind situations, FBM was again run with a very
large grid size (100,000 kin) with only a single grid point in the water, as was
done in the duration tests conducted in Chapter 4. The wind speed was set to
20 m/sec at 90 deg1 (blowing toward the north) and allowed to remain con-
stant for 10 hr. At the end of 10 hr, the wind speed remained constant and the
wind direction was shifted. Two test runs were completed using the new
source terms described in the previous section. In the first run, the wind was
shifted to 45 deg (a 45-deg shift) and in the second the wind direction was
shifted to 0 deg (a 90-deg shift). Figures 16 and 17 show the evolution of the

1 To convert degrees (angle) to radians, multiply times a factor of 0.01745329.
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mean wave angle following the 45-deg shift and 90-deg shift, respectively.
Figure 18 shows the behavior of the mean angle as a function frequency fol-
lowing the 45-deg shift. In this figure the mean angle for a given frequency is
defined as

where

2n

= fE(fo)cosO dO (17)
0

and

27C

= fE(t0)sin.o dO
0

These results are in agreement with observations of Hasselmann, Dunckel, and
Ewing (1980) and Gunther, Rosenthal, and Dunckel (1981) and show the same
general trends as obtained in the numerical experiments of Young,
Hasselmann, and Hasselmann (1987).

EVOLUTION OF MEAN ANGLE
45-DEGREE SHIFT

96 1 1 I 1

8a

80

uJU:

~72

C 64

56

48

40
0 8 16 24 32 40 48 56

TIME. HOURS

Figure 16. Evolution of mean wave angle following a 45-deg wind shift at
hour 5

32 Chapter 5 Additional Testing



EVOLUTION OF MEAN ANGLE
90O-DEGREE SHIFT

100 1 1 1 1

w
so

z

Z40

20

0
0 8 16 24 32 40 48 56

TIME. HOURS

Figure 17. Evolution of mean wave angle following a 90-deg wind shift at
hour 5

Spectral Distributions of Energy Produced by

FBM

With respect to frequency

Figure 19 shows frequency specta at 10-hr intervals from a 20-m/sec dura-
tion test up to 50 hr. Figure 20 shows the same spectra normalized by multi-
plying them by f4, i.e.,

EI(f) = Efi4

It is evident from these figures that FBM produces smooth, regular spectral
shapes that have similar characteristics to those observed in nature. At the
spectral peak, the energy is about twice that of the equilibrium range energies,
similar to the)f- normalized spectra of Donelan, Hamilton, and Hui (1985).
In the region from about 1.5 fp to 2.5 fp, the spectrum follows an approximate
f4 spectral form, consistent with many recent observations and theoretical
analyses (Forrestall 1981; Donelan, Hamilton, and Hui 1985; Kahma 1981;
Kitaigorodskii 1983). Above 2.5 fp the spectrum shifts to anf-5 form, as
stipulated in Chapter 4.
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Figure 18. Variation in mean angle as a function of frequency following a
90-deg wind shift at hour 5

With respect to angle

Figure 21 shows the distribution of energy for frequencies of 0.8, 1.0, 2.0,
and 3.0 f after 20 hr with a 20-n/sec wind speed and constant direction. As
can be seen there, the spectral width is narrowest near the spectral peak and
widest at high frequencies, consistent with observations of Mitsuyasu et al.
(1975) and Hasselmann, Dunckel, and Ewing (1980). If an angular distribu-
tion function is defined as

E (fo) = E (f) A (fO)

where

21c

fA(f!o) dO = 1 S(18)

and

A (f,O) = n-1 ancosnO + bnsinnO
n=1
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Figure 19. Spectral shapes for 10-hr intervals generated by FBM with a con-
stant 20-rn/sec wind speed

based on the Longuet-Higgins, CartwrighL and Smith (1963) analysis, then the
angular energy distribution can be parameterized as

A(fO) = l(s)cos2(_0.0)
f 2

where (19)

2nZ(f) =,fcos2s(-0 0) dOI-1

0

Hasselmann and Hasselmann (1981) sunmarize the empirical findings for the
behavior of s as
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Figure 20. Normalized spectra [E(Oftj for same spectra shown in Figure 19

s - 9.77 (f/fp)?

where (20)

= 4.06 for f<fp

= -2.36 for f>-fp

Figure 22 shows the variation of s as a function of Pf4 for the FBM spectra at
hour 20 compared to this relationship. As can be seen there, there is a general
agreement, but the wave spectra in FBM are not as broad (have higher s
values) at high frequencies.

36 Chapter 5 Additional Testing
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Figure 21. Angular distributions of energy normalized by the energy density of
the central angle

Prediction of Swell Evolution

In second-generation wave models, swell decay is usually either treated as
negligible and ignored, or is based on a simple scaling relationship. In the
WAM model, the DIA (WAM's version of Sn1) is only calculated over fre-
quencies in the local sea. S.l for swell frequencies is assumed negligible. To
test the capability of FBM to handle swell conditions, FBM was run with a
20-m/sec wind speed for 5 hr and wind speed was then lowered to 2 m/sec.
Figure 23 shows the evolution of wave height and spectral peak wave period
for this test. As can be seen there, the spectral peak continues to shift, and
wave height decays after the wind is lowered. Models that neglect this effect
are likely to underpredict wave periods for swell propagating over long
distances.
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Figure 22. Comparison of values of 's" estimated for a spectrum from FBM to
the Hasselmann, Dunckel, and Ewing (1980) relationship
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EVOLUTION OF WAVE HEIGHT AND PERIOD
IN SWELL TEST
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Figure 23. Evolution of wave height and period following a change in wind
speed from 20 m/sec to 2 m/sec at hour 5
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6 Summary and Conclusions

A full Boltzmann integration scheme has been implemented within a func-
tioning discrete spectral wave model and preliminary testing has been com-
pleted. The following conclusions are drawn from the tests and analyses
performed in this investigation:

a. Since third-generation models depend on a detailed balance among
source terms, it is important that these source terms be specified accu-
rately. In the present state of the art, information on all of the source
terms does not appear to be sufficient to permit definitive estimates of
all source terms in the detailed balance evaluation.

b. Older means of estimating S&I are much less accurate than the full
Boltzmann method used here. Even the DIA representation for SM,
used in the only previous third-generation wave model (WAM), has
been shown incapable of providing an accurate estimate of Sa. The
FBM should provide an improved method to investigate several impor-
tant wave generation and decay situations. This could also markedly
improve future second-generation wave models.

c. The WAMDIG source terms are inconsistent with observed wave-
growth laws and equilibrium-range behavior from JONSWAP. These
differences are very significant and cannot be removed by simple
tuning.

d. New source terms postulated in this report provide a very good match
to the JONSWAP wave growth rates and equilibrium-range behavior.
These source terms are not inconsistent with previous theoretical and
observational studies and are recommended for use in future applica-
tions and tests in FBM.

e. The performance of FBM in turning wind situations is consistent with
previous theoretical and empirical studies.

f. Spectral shapes produced by FBM (using the new source terms postu-
lated in this report) appear to provide a reasonable approximation to
spectral shapes from observations. In particular, the spectral peaked-
ness parameter is in the range of about 2.0 to 3.5 in the range of
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actively growing seas and becomes much smaller as the fully developed
condition is reached.

g. Swell decay in FBM is quite different from the WAM model and most
second-generation models. In WAM, wave-wave interactions in swell
are ignored and in second-generation models they are roughly para-
meterized. Tests in this study indicate that significant evolution of the
spectral-peak frequency continues after the wind is abruptly lowered.
This could explain much of the tendency of all present wave models to
underpredict peak periods in swell FBM results therefore could be a
significant improvement in specifying waves for modeling coastal
processes.

h. The current version of FBM should be regarded as a research tool. It is
a very new model and, as such, will need to undergo considerable
additional testing over several years before it could be considered as a
viable option for an operational model.
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